5G has suffered bad press from both detractors and supporters. Spoof stories about it spreading coronavirus were soon dismissed, but banal predictions of refrigerators ordering milk and shoppers wearing headsets to receive advertising were even more likely to blunt our interest. 5G undoubtedly creates the groundwork for an enormous technical revolution but adjusting the central heating with our smartphone or watching B-movies in higher resolution is not the point. Manufacturing and logistics industries will lead the real 5G revolution.
Although the public 5G network will take some time to get up to speed, local area networks can implement true 5G more quickly. This will enable factories, ports, universities, farms and airports to have their own industrial IoT systems (IIOT) today. Numerous factories are already claiming the ‘first’ 5G production lines, including a Nokia factory in Oulu Finland, Worcester Bosch in the UK, Mercedes Benz in Sindelfingen Germany and General Motors in Michigan.
Speed is often mentioned as a key advantage of 5G, but it helps if we break down the meaning of ‘speed’. 5G radio waves don’t move more quickly than 4G ones, rather the entire system has been optimised for faster data transfer. 5G can reduce latency to as little as a millisecond, enabling machinery to respond to sensors almost instantly.
Consider how quickly a driverless car must respond in order to operate safely and you will understand the value of low latency. In a similar way, 5G will enable a whole new generation of robots and automated machinery to radically improve dexterity, quality control and safety. Ericsson’s vice-president Åsa Tamsons explains:
"With one millisecond latency, you can sense whether there is a deviation in the process before the tool even hits the blade and you can stop the machine before the error happens".
‘Edge’ responses in today’s driverless cars are achieved by mounting the control device directly on the vehicle. 5G cars will achieve similar response times but with all the benefits of environmental network connectivity too.
5G also has far broader channels so that more devices can be connected simultaneously. It is said that 5G will soon be able to connect a million devices per square kilometre. Imagine what an engineer could do with ten thousand eyes and ten thousand hands. All the extra data feeding into AI enabled machinery would provide a precise real-time grasp of complex distributed systems and emergent situations with many industrial applications.
Not all 5G systems need to be this fast, but a typical industrial 5G LAN will match a good Ethernet one. A huge disadvantage of Ethernet is the wires, they are expensive to install, prone to breakages and need regular maintenance. In contrast, once setup a wireless 5G system is easy to maintain and reliable (99.9999% or ‘six nines’ reliability).
One reason for hard-wiring a system rather than using ‘wi-fi’ is because most types of wireless connection can fail to penetrate walls and metal obstructions. However, 5G is relayed between multiple small nodes and can re-route itself instantly if a passing tanker or crane blocks any particular path between devices. The technology is called ‘coordinated multi-point’ (CoMP).
Finally, 5G provides much improved network control, including the ability to subdivide the network. Known as ‘network slicing’, this means each virtual sub-net can be customised and optimised for multiple different purposes.
Whether public or private, 5G networks have applications everywhere. By planting sensors in the ground, farmers will know precisely how much water or fertiliser their crops need and when, or query weather satellites and predict their ideal harvest time and yield. Driverless machinery will often deliver it. The health of herds can be monitored remotely and assets tracked across the farm and supply chains.
The IoT has already demonstrated multiple applications in health and fitness. We are beginning to use proximity sensors and temperature sensitive cameras to track disease outbreaks. In the future 5G may be able to stop a public health threat in its tracks. Augmented reality may also facilitate remote examinations, benefitting people in isolation and the NHS system.
5G supports three rather different kinds of technology; smartphone broadband, large-scale IoT and critical ‘edge’ operations. Because smartphone makers need to sell handsets to pay for the public network, some of the more frivolous ‘benefits’ have been hyped. Many people will receive a Samsung S20 this Christmas and wonder what to do with it. However, the real revolution will be quieter and more impressive: few enterprises will be able to ignore 5G and still remain competitive.